2022-08-10來源:海文考研
考研數(shù)學(xué)解答題主要考查綜合運(yùn)用知識(shí)的能力、邏輯推理能力、以及分析、解決實(shí)際問題的能力,綜合性較強(qiáng),不過很多題目都有解題攻略,學(xué)會(huì)解題攻略,可以以不變應(yīng)萬變,摸清命*人的考查意圖。下面小編為大家?guī)砭€性代數(shù)-行列式與矩陣解題攻略,希望對(duì)你有所幫助~
一、行列式與矩陣
行列式、矩陣是線性代數(shù)中的基礎(chǔ)章節(jié),從命*人的角度來看,可以像潤(rùn)滑油一般結(jié)合其它章節(jié)出題,因此必須熟練掌握。
行列式的核心內(nèi)容是求行列式––具體行列式的計(jì)算和抽象行列式的計(jì)算。其中具體行列式的計(jì)算又有低階和高階兩種類型,主要方法是應(yīng)用行列式的性質(zhì)及按行(列)展開定理化為上下三角行列式求解而對(duì)于抽象行列式而言,考點(diǎn)不在如何求行列式,而在于結(jié)合后面章節(jié)內(nèi)容的相對(duì)綜合的題。
矩陣部分出題很靈活,頻繁出現(xiàn)的知識(shí)點(diǎn)包括矩陣各種運(yùn)算律、矩陣的基本性質(zhì)、矩陣可逆的判定及求逆、矩陣的秩、初等矩陣等。
二、向量與線性方程組
向量與線性方程組是整個(gè)線性代數(shù)部分的核心內(nèi)容。相比之下,行列式和矩陣可視作是為了討論向量和線性方程組部分的問題而做鋪墊的基礎(chǔ)性章節(jié),而其后兩章特征值和特征向量、二次型的內(nèi)容則相對(duì)獨(dú)立,可以看作是對(duì)核心內(nèi)容的擴(kuò)展。
向量與線性方程組的內(nèi)容聯(lián)系很密切,很多知識(shí)點(diǎn)相互之間都有或明或暗的相關(guān)性。復(fù)習(xí)這兩部分內(nèi)容zui有效的方法就是徹底理順諸多知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,因?yàn)檫@樣做首先能夠*證做到真正意義上的理解,同時(shí)也是熟練掌握和靈活運(yùn)用的前提。
這部分的重要考點(diǎn)一是線性方程組所具有的兩種形式––矩陣形式和向量形式二是線性方程組與向量以及其它章節(jié)的各種內(nèi)在聯(lián)系。
(1)齊次線性方程組與向量線性相關(guān)、無關(guān)的聯(lián)系
齊次線性方程組可以直接看出一定有解,因?yàn)楫?dāng)變量都為零時(shí)等式一定成立––印證了向量部分的一條性質(zhì)“零向量可由任何向量線性表示”。
齊次線性方程組一定有解又可以分為兩種情況:①有*一零解②有非零解。當(dāng)齊次線性方程組有*一零解時(shí),是指等式中的變量只能全為零才能使等式成立,而當(dāng)齊次線性方程組有非零解時(shí),存在不全為零的變量使上式成立但向量部分中判斷向量組是否線性相關(guān)、無關(guān)的定義也正是由這個(gè)等式出發(fā)的。故向量與線性方程組在此又產(chǎn)生了聯(lián)系––齊次線性方程組是否有非零解對(duì)應(yīng)于系數(shù)矩陣的列向量組是否線性相關(guān)??梢栽O(shè)想線性相關(guān)、無關(guān)的概念就是為了更好地討論線性方程組問題而提出的。
(2)齊次線性方程組的解與秩和極大無關(guān)組的聯(lián)系
同樣可以認(rèn)為秩是為了更好地討論線性相關(guān)和線性無關(guān)而引入的。秩的定義是“極大線性無關(guān)組中的向量個(gè)數(shù)”。經(jīng)過 “秩&rarr線性相關(guān)、無關(guān)&rarr線性方程組解的判定”的邏輯鏈條,就可以判定列向量組線性相關(guān)時(shí),齊次線性方程組有非零解,且齊次線性方程組的解向量可以過r個(gè)線性無關(guān)的解向量(基礎(chǔ)解系)線性表示。
(3)非齊次線性方程組與線性表出的聯(lián)系
非齊次線性方程組是否有解對(duì)應(yīng)于向量是否可由列向量組線性表示,使等式成立的一組數(shù)就是非齊次線性方程組的解。
以上就是小編給大家整理的行列式與矩陣解題攻略相關(guān)內(nèi)容,你學(xué)會(huì)了嗎!如果還有其他內(nèi)容想要了解的,可以關(guān)注考研數(shù)學(xué)指導(dǎo)欄目或咨詢一下我們專業(yè)的輔導(dǎo)老師哦。
(內(nèi)容來源于網(wǎng)絡(luò),由海文考研收集整理,侵權(quán)必刪!)